Financial Time Series Analysis of SV Model by Hybrid Monte Carlo
نویسنده
چکیده
منابع مشابه
Bayesian Inference of Stochastic volatility Model by Hybrid Monte Carlo
The hybrid Monte Carlo (HMC) algorithm is applied for the Bayesian inference of the stochastic volatility (SV) model. We use the HMC algorithm for the Markov chain Monte Carlo updates of volatility variables of the SV model. First we compute parameters of the SV model by using the artificial financial data and compare the results from the HMC algorithm with those from the Metropolis algorithm. ...
متن کاملBayesian analysis of GARCH and stochastic volatility: modeling
This paper develops a Bayesian model comparison for two broad major classes of varying volatility model, GARCH and stochastic volatility (SV) models on financial time series. The leverage effect, jumps and heavy-tailed errors are incorporated into the two models. For estimation, the efficient Markov chain Monte Carlo methods are developed and the model comparisons are examined based on the marg...
متن کاملEstimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models
This paper considers a flexible class of time series models generated by Gegenbauer polynomials incorporating the long memory in stochastic volatility (SV) components in order to develop the General Long Memory SV (GLMSV) model. We examine the corresponding statistical properties of this model, discuss the spectral likelihood estimation and investigate the finite sample properties via Monte Car...
متن کاملInference for Lévy Driven Stochastic Volatility Models Via Adaptive Sequential Monte Carlo
In the following paper we investigate simulation methodology for Bayesian inference in Lévy driven SV models. Typically, Bayesian inference from such statistical models is performed using Markov chain Monte Carlo (MCMC) methods. However, it is well-known that fitting SV models using MCMC is not always straight-forward. One method that can improve over MCMC is SMC samplers ([14]), but in that ap...
متن کاملClassical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models
In this paper Efficient Importance Sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate Stochastic Volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of high-dimensional interdependent integrals. It can be used to carry out ML-estimation of SV models as we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008